A well-conditioned estimator for large-dimensional covariance matrices

نویسندگان

  • Olivier Ledoit
  • Michael Wolf
چکیده

Many applied problems require a covariance matrix estimator that is not only invertible, but also well-conditioned (that is, inverting it does not amplify estimation error). For largedimensional covariance matrices, the usual estimator—the sample covariance matrix—is typically not well-conditioned and may not even be invertible. This paper introduces an estimator that is both well-conditioned and more accurate than the sample covariance matrix asymptotically. This estimator is distribution-free and has a simple explicit formula that is easy to compute and interpret. It is the asymptotically optimal convex linear combination of the sample covariance matrix with the identity matrix. Optimality is meant with respect to a quadratic loss function, asymptotically as the number of observations and the number of variables go to infinity together. Extensive Monte Carlo confirm that the asymptotic results tend to hold well in finite sample. r 2003 Elsevier Inc. All rights reserved. AMS 2000 subject classifications: 62H12; 62C12; 62J07

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

CONDITION NUMBER REGULARIZED COVARIANCE ESTIMATION By Joong - Ho Won

Estimation of high-dimensional covariance matrices is known to be a difficult problem, has many applications, and is of current interest to the larger statistics community. In many applications including so-called the “large p small n” setting, the estimate of the covariance matrix is required to be not only invertible, but also well-conditioned. Although many regularization schemes attempt to ...

متن کامل

JPEN Estimation of Covariance and Inverse Covariance Matrix A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty

We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...

متن کامل

A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics.

Inferring large-scale covariance matrices from sparse genomic data is an ubiquitous problem in bioinformatics. Clearly, the widely used standard covariance and correlation estimators are ill-suited for this purpose. As statistically efficient and computationally fast alternative we propose a novel shrinkage covariance estimator that exploits the Ledoit-Wolf (2003) lemma for analytic calculation...

متن کامل

MAXIMUM LIKELIHOOD COVARIANCE ESTIMATION WITH A CONDITION NUMBER CONSTRAINT By

High dimensional covariance estimation is known to be a difficult problem, has many applications and is of current interest to the larger statistical community. We consider the problem of estimating the covariance matrix of a multivariate normal distribution in the “large p small n” setting. Several approaches to high dimensional covariance estimation have been proposed in the literature. In ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996